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The best possible constant An in an inequality of Markov type

> d
dx
(e−xpn(x))>

[0,.)

[ An ||e−xpn(x)||[0,.),

where || · ||[0,.) denotes the sup-norm on the half real line [0,.) and pn is an
arbitrary polynomial of degree at most n, is determined in terms of the weighted
Chebyshev polynomials associated with the Laguerre weight e−x on [0,.). © 2001

Elsevier Science

1. INTRODUCTION

Among the many theorems relating the derivative of a polynomial to the
polynomial itself, two of the most well-known inequalities are Bernstein’s
inequality

|pŒ(x)| [
n

`1−x2
||p||[−1, 1], −1 < x < 1, p ¥Pn,

and Markov’s inequality

||pŒ||[−1, 1] [ n2 ||p||[−1, 1], p ¥P r
n. (1)

Here Pn and P r
n denote the polynomials of degree n and the polynomials of

degree n with real coefficients, respectively, and || · ||[−1, 1] denotes the sup-
norm on the interval [−1, 1]; that is, ||p||=sup{|p(x)|: −1 [ x [ 1}. Notice
that the version of Bernstein’s inequality mentioned here is a pointwise



inequality while Markov’s inequality is global. Even though Markov’s
inequality is global, we find that Markov’s inequality gives us a better local
estimate than that of Bernstein for x near −1 or 1. But, when x is not near
−1 or 1, the estimate given by Bernstein’s result can be much better than
Markov’s. In this paper, we will be concerned with inequalities similar to
the latter, the so-called Markov-type inequalities.

In general, the Markov-type inequalities involve finding

An :=sup
||(wp)Œ||
||wp||

(2)

as a function of n, where the supremum is taken over all p from a subset of
either Pn or P r

n, the weight w is fixed, and || · || is a norm. The classical
Markov inequality (1) is the case when the supremum is taken over P r

n,
w — 1, || · ||=|| · ||[−1, 1], and An is determined as

An=
||T −n ||
||Tn ||
,

where Tn(x)=
1
2n−1

cos(n arc cos x), the nth Chebyshev polynomial of the
first kind.

Various problems arise from considering different norms, weights, and
sets over which the supremum is taken. When sup-norm is used, there are
only two other cases besides the classical Markov inequality where An is
precisely determined. In these results An is expressed in terms of the
weighted Chebyshev polynomials. The first of these cases, studied by
Frappier [6], involved taking the supremum over polynomials with
restrictions on the location of their zeros with w — 1.

The second case, when w(x)=e−x
2
, || · || is the sup-norm on the whole real

line (−.,.), and the supremum is taken over P r
n, was first considered by

Mohapatra et al. [14] and later by Li et al. [10]. In [10] the An is
determined in terms of Tn( · , e−x

2
), the weighted Chebyshev polynomial of

degree n associated with the Hermite weight e−x
2
on (−.,.). Precisely, the

following result is proved:

Theorem A. Let Tn=Tn( · , e−x
2
) and || · ||=|| · ||(−.,.). Then

max
p ¥P

r
n , p ] 0

||(e−x
2
p)Œ||

||e−x
2
p||
=
||(e−x

2
Tn)Œ||

||e−x
2
Tn ||
.

Many results on estimates of An associated with Markov-type inequali-
ties have been obtained (cf. [12, pp. 700–723] and the references therein).
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One of the most recent of such results was a rational version of the Markov-
type inequality with the sup-norm, namely when || · ||=|| · ||[−1, 1] and the
weight w — 1/q, where q is a polynomial of degree n with distinct zeros
outside of [−1, 1]. This case was first studied by Borwein et al. [4] and
later by Min [13]. Although An is still unknown, estimates have been
found in terms of the nth Chebyshev rational function that can be viewed
as a weighted Chebyshev polynomial.

In this paper we will concentrate on the Laguerre weight e−x with
|| · ||=|| · ||[0,.) and obtain An in terms of the weighted Chebyshev polyno-
mials. We will adapt the approach of Markov (see, for example [1, 10, 19])
by considering first a pointwise version of the problem and viewing this
new problem as that of minimizing some linear functional under appropri-
ate constraints. Before we state our result we mention some related results
for Markov-type inequalities involving Laguerre weight.

In 1964, Szegő [17] proved the following:

Theorem B. For p ¥P r
n,

||pŒ(x) e−x||[0,.) [Mn ||p(x) e−x||[0,.),

whereMn ’ n; i.e.,Mn/n is bounded away from zero and infinity.

This result of Szegő implies an estimate of An, viz. An=O(n). For L2

norm, the corresponding sharp Markov-type inequality associated with the
Laguerre weight is obtained by Turan [18]. This result was rediscovered by
Shampine [15] who also obtained best constants for similar inequalities
where second derivatives are used. Further results and references can be
found in Dörfier’s paper [5].

Markov-type inequalities in Lp spaces associated with weights e−|x|
a

,
a > 1, have been considered in [7–9], but only estimates of An are
obtained. We remark that even in the L2 Markov inequality on [−1, 1],

1F 1
−1
|pŒ(x)|2 dx2

1/2

[ An 1F
1

−1
|p(x)|2 dx2

1/2

, p ¥Pn,

the extremal polynomials that reduce the inequality to an equality have not
yet been found (see [2, 7]).

We now turn to our main result.

2. THE MAIN RESULT

Let w be a weight function. The weighted Chebyshev polynomial Tn(x; w)
=xn+lower degree terms ¥Pr

n can be characterized by w(x) Tn(x; w) having
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an alternating set of n+1 points; see for example [11]. We will use T̂n to
denote the normalized weighted Chebyshev polynomial; that is, T̂n=
Tn/||wTn||.

The main result of this paper is the following:

Theorem 1. With w(x)=e−x, pn ¥Pr
n, and || · ||=|| · ||[0,.),

An=sup{||(wpn)Œ||: ||wpn||=1, pn ¥Pr
n}=||(wT̂n)Œ||=|(wT̂n)Œ (0)|.

Remark. Notice that the norm || · || is always taken on weighted polyno-
mials wpn and (wpn)Œ=w(p

−

n−pn). By a well-known result of Mhaskar and
Saff (cf. [11]), for w(x)=e−x, we have

||wpn||[0,.)=||wpn||[0, pn/2] and ||(wpn)Œ||[0,.)=||(wpn)Œ||[0, pn/2] .

Thus, we can use the compact intervals [0, pn/2] to replace [0,.) when
dealing with the sup-norm.

The outline on the proof goes like this: We will first consider the following
pointwise extremal problem: For y \ 0,

(Py) ˛
Maximize (wpn)Œ (y)
subject to
pn ¥Pr

n and ||wpn|| [ 1.

A standard compact argument shows that the extremal solutions of (Py)
always exists. Let Mn(y) denote the maximum value obtained while solving
the problem (Py). Then to find An, we find the largest value of Mn(y) as a
function of y. It turns out that extremal solutions of (Py) for the maximum
points y ofMn(y) are the weighted Chebyshev polynomials.

To prove Theorem 1, we need the following result of Shapiro [16]. Let P
be a normed space with norm || · || and let L be a linear functional on P. Con-
sider the more general problem

(PL) ˛
Maximize L(p)
subject to
p ¥ P and ||p|| [ 1.

(3)

Lemma 2 (Representation Theorem). Let C(S) be the set of real-valued
continuous functions on a compact Hausdorff space S. Let P be an
n-dimensional linear subspace of C(S) over R. Let || · || be the sup-norm taken
on the set S. Let L ] 0 be a real-valued linear functional on P. Then there
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exist points y1, y2, ..., yr ¥ S and nonzero real numbers l1, l2, ..., lr, where
1 [ r [ n such that

L(p)=C
r

i=1
li p(yi), p ¥ P,

and

||L||=C
r

i=1
|li|,

where

||L|| :=sup{|L(p)|: ||p|| [ 1, p ¥ P}.

The proof of this result can be found in [3, 16].
Now, let us go back to the pointwise problem (Py) for w(x)=e−x. Letting
P=wPr

n :={wpn: pn ¥Pr
n} and L(wp)=(wp)Œ (y) and taking S=[0, np/2]

(in view of the Remark following Theorem 1) in the Representation Theorem,
we have the following:

Lemma 3. The weighted polynomial wQn ¥ wP
r
n is an extremal element for

(Py) if and only if there exist lj ] 0 and yj, j=1, 2, ..., r for some r=r(y),
1 [ r [ n+1, with 0 [ y1 < y2 < · · · < yr [ np/2 such that

(wpn)Œ (y)=C
r

i=1
lj(wpn)(yj) for all pn ¥Pr

n,

sgn lj=sgn(wQn)(yj), and

|(wQn)(yj)|=||wQn||=1, j=1, 2, ..., r.

(4)

Remarks. (i) This result completely characterizes the extremal elements
for (Py). (ii) The last condition in (4) suggests that Chebyshev polynomials
will be of interest.

3. ADDITIONAL LEMMAS

Let w(x)=e−x. In this section, we shall obtain lemmas which will be used
in the proof of our theorem.

Now let y \ 0 and let w(x) Qn(x) :=w(x) Qn(x, y) be an extremal element
for (Py).
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Our first lemma says something about the case where r=n+1 in
Lemma 3.

Lemma 4. If r=n+1, then Qn=T̂n or −T̂n.

Proof. First note that since (wQn)Œ=w(Q
−

n−Qn), (wQn)Œ has at most n
zeros. Now suppose there is at least one j such that wQn(yj)=wQn(yj+1). If
this is the case, then (wQn)Œ (x)Œ has a zero in (yj, yj+1). But (wQn)Œ (yj)=0
for j=2, 3, ..., n+1. So (wQn)Œ has at least n+1 zeros, a contradiction.
Hence, Qn must have the maximal equioscillation property enjoyed by
only±T̂n. L

The next result tells us more about the zeros of w(x) p(x) and its
derivative when p ¥Pr

n.

Lemma 5. Let pn ¥Pr
n have n simple zeros in [0,.). Then (wpn)Œ has

exactly n zeros in (0,.). Further, the zeros of (wpn)Œ in (0,.) and the zeros of
pn interlace so that the largest zero of pn is less than the largest zero of (wp)Œ.

Proof. First note that (wpn)Œ=w(p
−

n−pn). Let q=p −n−pn. It is obvious
that q can have at most n zeros. We now show that q has n distinct zeros in
(0,.).

Let x1 and x2 be two consecutive zeros of pn. Then q(x1)=p
−

n(x1) and
q(x2)=p

−

n(x2) have opposite signs as implied by the assumption that pn has n
simple zeros. Thus, q and therefore (wpn)Œ has a zero between every two con-
secutive zeros of p. So, if xg denotes the largest zero of pn, then q has at least
n−1 distinct zeros in (0, xg). Suppose, without loss of generality, that the
leading coefficient of pn is positive. Then, since the degree of pn is one more
than the degree of p −n we see that q(x) < 0 for sufficiently large x. But
q(xg)=p −n(x

g) > 0. So q has one more zero in (xg,.). Thus, we have
accounted for n distinct zeros of q in (0,.). These zeros interlace with those
of pn, with the largest zero of q being larger than the largest zero
of pn. L

Lemma 6. For problem (P0), that is, when y=0 in the problem (Py), we
have r=n+1 in Lemma 3, and hence by Lemma 4, we have Qn(x, 0)=±T̂n.

Proof. Suppose y=0 and r [ n. Choose yr+1, yr+2, ..., yn each in (0,.) so
that yi ] yj, i ] j. Let pn(x) :=<n

i=1 (x−yi). By Lemma 5 we have that
(wpn)Œ (x) has exactly n simple zeros, all of which are in (y1,.). But by (4),
we have that y is a zero of (wpn)Œ. Since y=0, y ¨ (y1,.). So (wpn)Œ has n+1
distinct zeros, a contradiction. L
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4. PROOF OF THE MAIN RESULT

Recall that w(x)=e−x and || · ||=|| · ||[0,.).
First note that

sup{||(wp)Œ||[0,.): ||wp||[0,.) [ 1, p ¥Pr
n}

=sup{||(wp)Œ||[a,.): ||wp||[a,.) [ 1, p ¥Pr
n},

for any a ¥ R. This follows from the fact that w(x−a) p(x−a)=w(x)×
eap(x−a) ¥ wPn. This translation invariance property of the problem will be
crucial in our proof. We explore this property as follows.

Let y > 0. Let Qn(x, y) be an extremal polynomial in x for the pointwise
problem (Py). Consider pn(x) :=w(y) Qn(x+y, y). Note that

||w(x) pn(x)||=||w(x+y) Qn(x+y, y)|| [ 1.

Further, note that by Lemma 6

“

“x
w(x) Qn(x, y) :

x=y
=
“

“x
w(x) pn(x) :

x=0

[
“

“x
w(x) Qn(x, 0) :

x=0

=|(wT̂n)Œ (0)|.

Thus, we see that

sup{||(wpn)Œ||: ||wpn|| [ 1, pn ¥Pr
n}

=max 3 “
“x
w(x) Qn(x, y) :

x=y
: y \ 04=|(wT̂n)Œ (0)|.

On the other hand, note that for some y0 \ 0,

|(wT̂n)Œ (0)| [ ||(wT̂n)Œ||=|(wT̂n)Œ (y0)| [ :
“

“x
w(x)n(x, y0) :

x=y0

:[ |(wT̂n)Œ (0)|.

So we have

|(wT̂n)Œ (0)|=||(wT̂n)Œ||.

This completes our proof.
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